
283 

On the Analysis of Exponential Queuing 
Systems with Randomly Changing Arrival 
Rates: Stability Conditions and Finite 
Buffer Scheme with a Resume Level * 

Catherine Rosenberg 
D~partement de G~nie Electrique, Ecole Polytechnique, Case 
Postale 6079, Succ. A, Montreal, P.Q., Canada H3C 3A7 

Ravi Mazumdar 
INRS-Telecommunications, Unioersit~ du Quebec, 3 Place du 
Commerce, lie des Soeurs, P.Q., Canada H3E 1H6 

Leonard Kleinrock 
Department of Computer Science, University of California, Los 
Angeles, CA 90024-1596, USA 

1. Introduction 

Realistic considerations of certain stochastic 
service systems often warrant the introduction of 
random changes in the intensity of  the input pro- 
cess. A typical example of a changing arrival rate 
system is a communicat ion network with a sudden 
unpredictable increase in the traffic due to an 
external phenomenon.  Such a situation can occur 
in a telephone network where a switching ex- 
change node has crashed which results in an in- 
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This paper considers a single server exponential queue with 
random fluctuations in the intensity of the arrival process. The 
motivation being the modelling of random changes in traffic 
patterns. This random intensity model does not obey the 
independence assumption made in queuing theory. Necessary 
and sufficient conditions for the stability or ergodicity of the 
queuing process are obtained via analytic techniques using 
Jury's stability criteria, often used to study discrete time con- 
trol systems. The effect of such fluctuations is then studied for 
a finite resume level queue which is often used in flow control. 
Exact performance measures are computed and are compared 
with existing results. 
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crease in the traffic at the other nodes toward 
which the calls may be rerouted. One could then 
adapt  or control other parameters of the system to 
respond to the random changes to maintain de- 
sired system performance. 

Random intensity models were most  compre- 
hensively studied by  Yechiali and Naor  [14] and 
Neuts [8]. Their approach was to model the ran- 
dom fluctuations by an intensity rate indexed by a 
finite state Markov process extraneous to the 
queuing processes evolving independently of them. 
Conditioned on the sample path  of the Markov 
process, the queuing process could be analysed in 
terms of well-known paradigms. In the mono- 
graph by Neuts [9] the model is discussed in the 
f ramework of phase type distributions and 
analysed via matrix-geometric techniques. The 
model proposed in this paper  falls under the gen- 
eral class of models discussed above but differs in 
the assumption of independence of the sojourn 
time in a particular state and the arri.val and 
service times. In particular, the sojourn time is 
assumed to be correlated with the arrival times 
differing from the usual Markov modulated arrival 
processes. A related problem with slow variations 
in arrival rates is discussed in [3]. 

We first study the infinite buffer case. Using 
purely analytic methods and an interesting appli- 
cation of Jury's stability criteria [4] we obtain 
necessary and sufficient conditions for the stabil- 
ity of the queue or the existence of an invariant 
measure for the Markov process. In particular, we 
obtain similar conditions as in [1] which were 
found via different techniques. We then study the 
effect of such random fluctuations in the perfor- 
mance of a finite buffer with a resume level since 
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such schemes are often used for congestion con- 
trol. The random fluctuations are useful to model 
situations with competing multiclass traffic and 
breakdowns. For a discussion of resume level 
queues in the M / M / 1 / K  case see [10]. An exten- 
sion of the results to the M / G / 1 / K  case was 
done by Takagi [13]. Thus, the results can be 
considered as an extension to a particular case of 
a G / G / 1 / K  queue. 

The paper  is organized into 5 sections. In Sec- 
tion 2, the model is formulated. In Section 3, the 
case of infinite buffer is analysed and the stability 
conditions are obtained using Jury's  criteria. In 
Section 4, the finite buffer scheme is analysed and 
several performance measures are calculated and 
compared with the resume level queue in the 
M / M / 1  case. 

2. M o d e l  formulat ion  

As mentioned in the introduction the motiva- 
tion for the model is to introduce the effect of 
random fluctuations in the intensity of the arrival 
process due to the effect of random phenomena or 
interfering classes of traffic. 

In this paper  the analysis is restricted to the 
case where the arrival rate takes two possible 
values, which may represent two message classes 
or different traffic conditions. It  is also assumed 
that the basic queuing set-up is Markovian, i.e. the 
arrival and service processes are exponential. In 
particular it is assumed that the arrival rate of 
intensity )t takes values f rom the set ( ) t0 , ) t l} .  
Corresponding to the arrival rates the service pro- 
cess has the rate (#0, /~l}-  

Let Nx(t ) denote the arrival process which is 
Poisson parametrized by the intensity )t. Let k, 
k = 1, 2, 3 . . . . .  denote the arrival epoches of the 
process to the buffer. 

The intensity is modelled as 

) t ( k  + 1) 

= [)t0 + ()t ,  - } % ) 1 ( O ,  = 1)]  I ( ) t ( k )  = )to) 

+ [)t, + ()t o - X l ) I ( O 2 = l ) l I ( ) t ( k )  = )t,) 

(2.1) 

where 01 and 0 2 are two binary random variables 
with: 

Pr (O 1 = 1) = (1 - p ) ,  (2.2) 
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Pr(O z = 1) = (1 - r) (2.3) 

and I ( A )  is the indicator function of the event A. 
The index k denotes the k th arrival instant. 

The model for the intensity of the Poisson 
process given by (2.1)-(2.3) describes an intensity 
which fluctuates randomly between the values X0 
and X~ with its sojourn in a particular state 
governed by a geometric distribution. It is how- 
ever important to note that the Markov process 
governing the parameter fluctuations is now not 
independent of the queuing process. The above 
model can be readily extended to the case where 
X~ (X0, Xa . . . . .  AN} but only the case with two 
values is considered here. 

The model above assumes that the intensity 
changes at a random arrival instant. This results in 
a discretization of the model, and seems realistic 
since detection of changes can be made at arrival 
times as the interarrival times carry information 
about the stochastic process [7]. 

The above model is motivated by problems 
arising in the analysis of sources feeding into a 
network with time dependent characteristics. This 
class of models is proposed for packetized video 
with variable rate coding. Specifically, the coder 
can operate at various rates depending on the 
motion present [6]. When the coder is operating in 
the normal region packets arrive with a given rate 
and are served according to a given rate. When 
motion is present, the coder output rate increases 
and on the receipt of the packets in the queue the 
service rate is altered in order to maintain the 
fidelity of the transmission. This results in an 
adaptation of the service rate when the arrival rate 
changes. The length of time in each mode is 
assumed to be exponential, modelled by the 
parameters p and r in the model. 

P ~ , o  

gl 

3. Infinite buffer case 

3.1. Introduction 

In this section, we study the case where the 
queue described above has an infinite buffer. This 
model does not obey the independence assump- 
tions [5]; in particular, the sequence of interarrival 
times cannot be considered as independent and 
thus the standard results derived in classical Queu- 
ing Theory cannot be used. Thus, the method we 
will use is the basic Markovian one. We use the 
moment generating function approach to analyse 
this model and Jury's criteria [4] to obtain the 
stability conditions. 

3.2. Analysis 

3.2.1. The Markov chain 
According to the formulation of the model, the 

description of the infinite two dimensional Markov 
chain is straightforward. A state of this chain can 
be viewed as the pair (k, ~0) (resp. (k, ~1)) where 
k represents the number of messages in system 
and h 0 (resp. ?~a) represents the arrival rate of the 
last arriving message. The state-transition-rate di- 
agram for this infinite state system is shown in 
Fig. 1 where the upper line corresponds to ~0 and 
the lower to Aa. 

3.2.2. Equations 
Let us study this Markov chain in steady state. 

Define: 

Pk = Pr(k messages in system, ~0), 

Qk = Pr(k messages in system, At), 

N k = Pr(k messages in system) = Pk + Qk- 

Pk0 

Fig. 1. The Markov chain: infinite buffer case. 
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and let the generating function for Pk (resp. Qk 
and Nk) be 

oo 
P ( z )  = Y'~ Pkz k (resp. Q(z)  and N(z) ) .  

k = 0  

We then find 

a2 z2 + alz + a 0 Nu( z ) 
U(z )  = b3z3 + b2z2 + blZ + bo De(z ) (3.1) 

with 

(1 -r)X0 
e ( 1 )  = (1 - r)X0 + (1 - p ) X l  ' (3.2) 

(1 - p ) X  1 
Q(1) = (1 - r )X 0 + (1 - p ) X  1 ' (3.3) 

/t0Po +/t100 = [/t0 - P X 0  - (1 - p ) X l ]  P(1)  

"+- [ / t l  --  r~ka --  (1 - r ) ko ]  0 ( 1 )  

= V ( 3 . 4 )  

and 

a 2 = ( - 1  +p + r)(XoV+/t0(Xl - X0)P0), 

a 1 = ( - / t 0 - P X o -  (1 - p ) X a ) V  

+ / t 0 [ ( / t 0 - - / t l ) - - ( - - l + p + r ) ( X l - - X 0 ) ]  

XPo, 

a0 = / to (  V +  (/tl - / t 0 ) P 0 )  ; (3.5) 

b 3 = X0Xa(1 - r - p ) ,  

b 2 = X0Xa(1 - p  - r + 2pr) + r/toX 1 +pXo/tl 

+(1  - p ) r X  ] + (1 - r)pX 2, 

bl = ho ( - p / t a  - (1 - r ) / to)  

+ Xl(--r/t  o -- (1 - -p ) / t l )  --/t0/tl, 

b0 =/t0/ta. (3.6) 

The problem is now to eliminate the last un- 
known constant, Po- 

3.2.3. Discussion 
The solution for P0 is obtained by noting that 

N(z) is an analytic function in z of a probability 
distribution. First note that N ( 1 ) =  Nu(1)/De(1 ) 
-- 1 where Nu(1 ) = a 2 + a 1 + a o < 0 since p, r < 1. 

This implies that De(1 ) must also be negative 
which is just equivalent to the necessary condition 
for stability, i.e. ~ < ~, where ), and ~ are the 

mean arrival and the mean service rates respec- 
tively, that is 

= (P•0 + (1 - p ) X l ) P ( 1  ) + (rX 1+ ( 1 - r ) X o )  

x Q ( 1 )  

and 

= / t 0 P ( 1 )  + / t l Q ( 1 ) .  ( 3 . 7 )  

Noting that Nu(0 ) = a 0 > 0, this together with 
Nu(1 ) < 0 imply that the numerator has a real root 
in (0, 1]. Since De(1 ) < 0, De(0) > 0, there exists a 
real root for the denominator in (0, 1]. Since N(z) 
is analytic, if 5 is a root of the numerator it must 
be a root of De(z ). Thus setting Nu(5 ) = 0 enables 
us to compute Po exactly [11]. 

Let us now study the issue of stability. 

3.2.4. Stability criteria 
We know that a queuing system is stable if and 

only if the associated Markov chain is ergodic [5], 
in which case there exists an unique solution for 
the set of N k where N k satisfies 0 ~< N k ~< 1 and 

~ N k = l .  
k=O 

The uniqueness of N k under these conditions is 
equivalent to the analyticity of N(z) in the unit 
circle. It also implies that N O is unique and hence 
so must Po since 

/ t lN o -  V 
Po = No - Q0 = (/tl - tt0) (3.8) 

and V is unique (see Eq. (3.4)). Therefore, the 
system will be stable if N(z) is analytic in the unit 
circle and Po is unique. This is equivalent to the 
denominator having a single root in the unit circle 
[11]. Hence necessary and sufficient conditions for 
stability are D e ( l )<  0 and D e has a single root 
within the unit circle. 

We now use Jury's criteria [4] to find the condi- 
tions under which the denominator has a single 
root within the unit circle. This criteria has been 
widely used in the study of the stability of discrete 
time control systems and presents us with a con- 
venient analytical tool to obtain the necessary and 
sufficient conditions for the Markov chain to be 
ergodic. For details see [4]. It suffices to mention 
that for an n th degree polynomial p(z), we can 
define n products denoted/7 , ,  i = 1, 2 . . . . .  n, with 
each H i being specified completely by the coeffi- 
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cients of the polynomial such that the number of 
negative products is equal to the number of zeros 
of the polynomial inside the unit circle. For  the 
case of the polynomial of 3rd degree De(z  ) we 
have 

/71 = I b 0 1 -  Ib31 = / t o / t a -  I 1 - P -  rlXoXl, 

/72 =/Ta(I bo 2 -  b 2 l -  Ibob2-  bab3 I), 

/73 1) De(l). 
Hence by Jury's criteria De(z  ) will have a single 

root within the unit circle if and only if exactly 
one of the products is negative. 

Hence, a necessary and sufficient condition for 
stability is that exactly one of the conditions St, 
i = 1, 2, holds 

S 1 = {De(1 ) < 0 ,  /to/ta > l1 - p -  r Iho)ta}, 

(3.9) 

$2= (De(1) < 0 ,  /togl < I 1 - p - r I ) % x l ,  

n 2 > 0 } .  (3.10) 

By further analysis using a convexity argument 
we show that [12] if De(1 ) < 0, then either S a or S 2 
always holds and hence De(1 ) < 0 is both a neces- 
sary and sufficient condition for the stability of 
the queuing system. 

To show that De(1 ) < 0 is necessary and suffi- 
cient is equivalent to showing that De(1 ) < 0 and 
H a < 0 imply t h a t / / 2  > 0. Two cases, i.e. p + r < 1 
and p + r > 1, need only be considered. The case 
p + r = 1 is trivial. 

Case 1: p + r < 1 (b 3 > 0). Then /-I2 > 0 when 
De(1 ) < 0 and/-I1 < 0 follows by simple algebra. 

Case 2: p + r > 1 (b 3 < 0). Define F ( p ,  r )  = b 2 

_ b 2 + bob 2 - b3b 1. 
Then simple algebra gives H E > 0 is equivalent 

to F ( p ,  r ) < 0  for p + r > l .  Let p + r = a  and 

consider the parametric equation fa (P )  = F ( p ,  a 
- p )  for a in [1, 2). Then simple algebra shows 
that f a ( P )  = uP 2 + vp + W where u =/ta/t0(X0 - 
)~1) 2 > 0 is independent of a. Hence f a ( P )  is con- 
cave. It is easy to see that (a  - 1, 1) and (1, a - 1) 
are the extreme points of this equation for a in 
[1, 2) and substituting for these it can be readily 
seen that fa(1) and f a (a  - 1) < 0 and since f a ( P )  
is concave, it implies that for any value of p in 
[a - 1, 11, f a ( P )  < O. 

Another way of seeing this is that for p = 1 and 
r - - a -  1, the system is equivalent after a finite 
time with an M / M / 1  queue with parameters 

( )%,/ to)  and thus De(l) < 0 is necessary and suffi- 
cient. 

3.2.5. R e m a r k s  about the stability conditions 
(a) The above condition De(1 ) < 0 is equivalent 

to ~, = E ( ~ )  < E( / t )  = ~. This condition agrees 
with the recent results of Baccelli and Makowski 
[1] in which they showed that a very large number 
of queues in random environments are stable iff 
the average arrival rate is less than the average 
service rate. Their techniques were based on Palm 
theory and Loynes' scheme. What we have ob- 
tained is a direct proof by purely analytic tech- 
niques without invoking probabilistic arguments. 

(b) In the G I / G I / 1  case where the arrival and 
service processes are independent of each other, 
the probability of the system being non empty is 
given by N o = 1 - p where p = X / g  is the utiliza- 
tion factor (see for example [2]). 

Since the model we consider does not fall under 
this class, this result does not hold in general. In 
fact defining X = N o - 1 + p, 

X =  (/tl -/-to) (poQ(a)  _ QoP(1) ) 
/t 

can be thought of as a measure fo the deviation 
from the G I / G I / 1  results. Note that X =  0 if 
/ta = / t 2  or PoQ(1) = QoP(1). 

Figures 2 and 3 show X as a function of / t l  (for 
example). In Fig. 2 (A0, hi, /t0, P, r ) =  
(1, 4, 2, 0.2, 0.4) a n d / t i  >/ t0 for stability whereas 
in Fig. 3 (h0, ~,a, /to, P, r )  = (1, 3, 4, 0.3, 0.8) and 
the system is stable for all choices of/ta- 

(c) It can be easily seen that a system with two 
stable "subqueues" is stable, which justifies our 

0.07 

X 

O.Ol 

gl  
o 

2 4 6 8 lO 12 

Fig. 2. X as a func t ion  of ~1 wi th  (ho, ~1, go, P, r )  = (1, 4, 2, 
0.2, 0.4). 
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0.02 

X 

o.oo2 ,~, g l  
o 

6 lO 14 18 22 

Fig. 3. X as a function of #1 with (X 0, ~1, #0, P, r )  = (1, 3, 4, 
0.3, 0.8). 

1.11 / 

1.05 I 
r 

I I 

0.4 0.5 0.7 

Fig. 5. N(r) and N ( r )  for (~0, ;kl,/~0, P'], P)  = (2, 3, 4, 5, 0.92). 

intuition (a subqueue corresponds to the pair 
(hi , /~i)  i = 0, 1). However it may be possible for 
the entire system to be stable even if both the 
subqueues are unstable. This is due to the fact that 
the parameters can compensate for each other. As 
an example consider the case where X0 >/% > ~1 

> #1 with )% = 100, ~0 = 90, )k 1 = 10, ~1 = 9 and 
p = r = 0.1; then De(1 ) < 0 and so the stability 
condition is satisfied. This is due to the switching; 
the system will be most likely served at the highest 
rate, namely #0 (with probability P ( 1 ) =  0.909) 
whereas the arrival rate which will most likely 
occur is the lowest, namely )q (with a probability 
( 1 - p ) P ( 1 )  + rQ( 1 )=  0.83). It can also be easily 
seen that for the case )~i > #j for i, j = 0, 1, the 
system is always unstable. 

3. 2.6. Performance measures 
In this section some performance measures for 

the infinite buffer case are computed and com- 
pared to known results. 

Figures 4 -6  show the behaviour of the average 
number of messages N in the queue vs. r for 

N 
r 

i i 

0 . 1  1 

Fig. 4. N(r) and N ( r )  for (~o, Xl, ~o, ~1, P)  = (2, 7, 3, 8, 0.4). 

N 
2,25 

/ 
/ 

/ 
/ 

/ 

1 . 0 5  . . . . . . . .  ~ - -  r 
I I I I I I I I I I 

0.1 1.0 

Fig. 6. N(r) and N(r) for (~0, ;kl, go, g~, P)  = (8, 2, 6, 3, 0.08). 

different sets of parameters. These results are 
compared to the result N for a standard M / M / 1  
queue with the parameters ~ and ~ as defined in 
Eq. (3.7). In Fig. 4, N and .N have the same 
behaviour but  N is always greater than N. In Fig. 
5, N and N have similar behaviour but N is not 
always greater than N. In Fig. 6, N and N have 
different behaviour and N is always greater than 
N. This implies that in general it is difficult to 
predict the performance by considering the "aver- 
aged" M / M / 1  approximation. 

4. The finite buffer s cheme  with a resume level 

4.1. Introduction 

The resume level scheme is now analysed as an 
exponential queuing system with a finite waiting 
room K, subject to arrival and service processes 
discussed above. When the buffer is full, the input 
flow is shut down until the contents of the buffer 
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fall below a level H, called the resume level or 
hysteresis, after which the input is restored. 

Below the model is analysed via the moment 
generating function approach as in Section 3.2.2. 

4.2. Analysis 

4.2.1. The Markov chain 
From the formulation of the model it is 

straightforward to see that the queue forms a 
continuous time Markov chain whose state is 
parametrized by the triplet (n, Xi, x) where n 
represents the number of messages in the buffer, 
hi represents the arrival rate of the last arriving 
message and x is a binary variable with x = 1 
representing non-blocked input flow implying that 
the buffer has not saturated while x = 0 implies 
that the buffer has saturated but not dropped 
below H indicating blocked input flow. The state 
transition diagram for the process is shown in Fig. 
7. The chain has four phases. The topmost (bot- 
tommost) corresponds to x = 0, ~ = h 0 (resp. X~). 
Phase 2 (resp. phase 3) corresponds to x = 1 and 

= ~0 (resp. ~1)- 

4. 2. 2. Equations 
The Markov chain is now analysed to obtain 

the steady-state or invariant distributions for the 

queuing process (the existence is trivial since the 
process forms a finite irreducible Markov chain). 

Define: 

Pk = Pr(k messages in buffer, ~0, x = 1), (4.1) 

Qk = Pr(k messages in buffer, X 1, x = 1), (4.2) 

T k = Pr(k messages in buffer, ~0, x = 0), (4.3) 

L k = Pr(k messages in buffer, X 1, x = 0), (4.4) 

and 

Nk = Pk + Qk + Tk + Lg. (4.5) 

And let P(z) ,  Q(z),  L(z) ,  T(z)  and N(z )  
denote the moment generating functions of P., 
Q.,  L . ,  T. and N. respectively, i.e. 

K - 1  

P ( z )  = Y'~ Pnz", (4.6) 
n = 0  

K - 1  

Q ( z )  = ~, Q,z",  (4.7) 
n = 0  

K 

T ( z ) =  ]~ T , , z " = A ( z ) ( K - H ) P b l  (4.8) 
n = 0  

where 

T m = po(PPK_l + (1 -- r ) Q x _ l )  = Pb 1 
for H <n<<.K, 

~k 0 K 2n 

Po=--~o and A ( z ) = . = ~ / + l  ~ K - H "  (4.9) 

P)-o 

( ~  .... 

Fig. 7. The Markov chain: finite buffer with a resume level. 

0 

;'1 

phase 1 

phase 2 

plwse 3 
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In a similar way it can be seen that 2.4 
2.2 

L(  z ) = A( z )( K -  H)Pb2 (4.10) 20 

where 18 
1.6 

L,, = p,(rQK_ 1 + (1 --P)PK-,)  = Pb2 14 
1.2 

for H < n < K, 1.o 

~kl 0.8 
p, = - -  ( 4 . 1 1 )  

/~] o.6 

0.4 
Then N(z)  is given by 0,2 

N(z )  = P ( z )  + a ( z )  + L ( z )  + r ( z )  o,o 

= P( z )  + Q(z)  + Pb A(z ) .  (4.12) rig. 8. 

Remark. Note that Pb = (Pb] + P b z ) ( K -  H )  is 
the blocking probability of the system. 

Hence taking transforms of the equilibrium 
probability equations and after straightforward 
algebra it can be easily seen that N(z) can be 
obtained in terms of the system parameters and 
the four unknowns (P0, Q0, Pbl, Pb2) as 

N(z)=(a2 z2 +alz+ao+A(z)(K-n) 

×(aK_lZ2+aK_2Z+aK_3))  

×(b3 z3 + b2 z2 + b,z + bo)-l  + Pb A ( z )  

(4.13) 

with 

a 2 

a l  

= ( p  + r - 1)(X,/xoP o + Xo/~aQo), 

= - I t , ( # 0  +pXo + (1 - p ) X , ) Q o  

- #o(/X, + rX] + (1 - r)Xo)P o, 

ao = #0#,(P0 + Oo). 

The parameters aK_~, ag_2, aK_ 3 can be ob- 
tained by replacing Po by Pb] and Qo by Pb 2 in 
the expressions for a 2, a], a 0 respectively. 

Remark. The denominator is identical to the de- 
nominator in the case of an infinite buffer (see 
(3.6)) and is completely characterized by the 
known probabilities, arrival and service rates p, r, 
~o, ~], ~to, /~a, respectively. 

The unknowns can now be eliminated by using 
the fact that N(z)  must be analytic being a mo- 
ment generating function of a probability distribu- 
tion. 

From the expression for N(z)  it can be seen 

f 

/ /  

/ 

N 

K I I I I I I I I I I 

2 4 6 8 10 12 14 16 18 20 

N ( K )  and N ( K ) f o r H = K - 1  and (~o, hi, #o, /~], P, 
r) = (8, 2, 7, 3, 0.08, 0.5). 

that it is of the form 

Pn(Z) 
N ( z )  = Pb A ( z )  + De(z------ ~ (4.14) 

where Pu(z) is a polynomial in z of order K +  2. 
Since Pk, Qk, Lk, Tk are zero for k > K it implies 
that N(z)  must be a polynomial of order K. This 
is only possible for all values of the parameters ~,, 
#, p, r if and only if the roots of the denominator 
polynomial De(z) are also roots of Pu(z). This 
yields three equations in order to eliminate the 
four unknowns. The fourth relation is obtained 
from the fact that N(z)  being a moment gener- 
ating function must be equal to 1 at z -- 1. Thus, 
N(z)  can be written as a K th  degree polynomial 
in z whose coefficients can be completely de- 
termined and hence the various probabilities can 
be solved for. 

Remark. If K ~ ~ ,  then A(z)  tends to zero and 
the results of Section 3 can be recovered. 
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P b ( K )  and ]~5(K)  for  H =  K - t  and (Xo, h i ,  /~o, /~1, 
p, r)  = (8, 2, 7, 3, 0.08, 0.5). 
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Fig. 10. N(H)  for (X0, Xl,/x 0 , /h ,  P, r, K )  = (10, 50, 11, 20, 
0.2, 0.5, 15). 

4. 2.3. Performance measures 
In this section some performance measures for 

the buffer scheme are computed and compared to 
known results. Figure 8 shows the behaviour of 
the average number of messages N in the queue 
vs. the buffer capacity assuming that there is no 
resume level. This is compared to the results N for 
a standard M / M / I l K  case with the parameters 
and ~ as defined in Eq. (3.7). 

Figure 9 shows the behaviour of the blocking 
pr__obability Pb vs. K, the capacity of the queue. 
Pb represents the blocking probability in the 
M / M / 1 / K  case or the Erlang loss function. 

It can be seen that while the behaviour is the 
same, the average model gives optimistic results, 
i.e. lower average number of messages and lower 
blocking probability than the model proposed here. 

For a finite buffer scheme with a resume level a 
measure of the oscillations in the system due to 
the on/off  nature of the control is given by F~, the 
frequency of the on/off  cycles (see [10]); 
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Fig. 11. P b ( H )  for the same parameters as in Fig. 10. 
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Fig. 12. F~(H) for the same parameters as in Fig. 10. 

Pb 
F s = K _  H • 

Figures 10, 11, 12 show the behaviour of the 
average number of messages, the blocking prob- 
ability and the frequency F s vs. the resume level, 
H, for a finite capacity queue with K =  15 for 
typical values of the parameters. These curves 
compare very well with the "average" curves for 
the M / M / l / 1 5  queue with the average values X, 

defined earlier. This is because the average 
sojourn time for the processes in the second phase 
is appreciable and the average loading is high 
reducing the effect of the fluctuations in the 
parameters. The effect of the fluctuations is felt 
when the loading is low or if the sojourn time in 
the overload region is small and the parameters 
are vastly different. Thus under heavy traffic con- 
ditions the random parameters may be replaced 
by their averages and the conclusions of Reiser 
[10] are valid. However, these are only for the first 
order statistics. The second-order statistics can be 
readily obtained since the moment generating 
functions are known exactly. 

The analysis of the curves permits the de- 
termination of a suitable resume level in order to 
obtain a good compromise between an average 
number of customers in the system and a small t7 
so that the buffer could be designed to minimize 
the average number of resume cycles. 
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